Askemos - a distributed settlement

Jorg E. Wittenberger
softeyes
Erlenstr. 22
01097 Dresden, Germany
Joerg.Wittenberger@pobox.com

28 April 2002

Abstract

This paper presents Askemos[1], an autonomous, distributed operating system on top of peer to peer
networks which significantly raises the level of abstraction in comparison with today’s operating systems.
Askemos addresses safe, secure and correct (forge proof) information processing while securing intellec-

tual property in an innovative way.

Askemos defines a virtual machine on document level, which is defined in terms of abstract trees and
pure functional transformation of them, both described in XML.

This virtual machine has no physical representation at any single machine. Instead it works distributed
among independent components which appear as if they observed it. To achieve that effect, the participat-
ing machines compute the process steps of the virtual machine independent and vote among each other

about the correct result.

To prevent illegal attacks, there exists no concept of unique resources like superuser rights or unique

name spaces.
Introduction

The digital age started out with several promises.
Among the big bunch of curious to abstruse dreams
are some more serious plans. One of this ideas is the
“paperless Office”. As a humorous definition says,
it’s “the one with the highest rebate at the local pa-
per store”. But these kind of jokes contain a grain of
truth.

Media are used for storage of information since
the invention of written language. As the informa-
tion volume grew, the mass and cost of the media
were reduced. From stone over clay to papyrus and
parchment through nowadays paper.

A logical derivative would be to use our com-
puters abilities accordingly: computers can not only
store as much information as the paper equivalent
of a medium sized forest, it is also able to process it.

But paper is still preferred! So: what is wrong
with todays computers? — A short glimpse will
show up: they are not reliable!

Even an acid bleached piece of paper will be
readable in 20 years. Try that with digitaly stored in-
formation: Let alone physical damages, chances are,
that the format of the information can not be read
anymore in 20 years.

There are some examples at hand: Software
evolves and data formats change. Sometimes the
old software ceases to work for some reasons - if

only because it was just upgraded. When a newer
version does not read the old data and there is no-
body to fix it, the data is lost. With a good portion
of luck and if the word processors were made by the
same company, you can import text from documents
you wrote five years ago into new word processors.
However you will already loose some formats. In
the worst case, you won't be able to read anything,
and loose all of your information.

This is even more likely to happen with 20 years
old data.

Or think of a contract you kept on your comput-
ers hard drive quite a long time. One day you come
home and your child tells you: “Look here what a
cool game I've got. By the way, I had to make some
space at the hard drive. Don’t worry I removed only
old files...” Should this even be possible?

Let us resume, how it works today - in a world
based on sliced forests. Documents like passports
and birth certificates are printed on paper. You need
your birth certificate to get a passport. This birth
certificate is your’s, you are the owner. But there is
a copy of it at the registry office. If you loose your
copy, you get a replacement. For the passport, you
have to leave a copy of your birth certificate and
you might leave several more copies elsewhere. This
secures the information against forgery or physical
damage. One copy is nothing; the same informa-
tion on many copies leads to a conclusion. There is



no 100% guarantee but a well grounded assumption,
that nobody can forge or destroy all of these copies.

Another implication is, that a single copy is
worth nothing. Try forgeing your birth certificate
and ask the registry office to update their “backup”.
The clark at the registry office might be able to do
so. But it’s going to be hard to forge all traces.

Remember lots of old news about defaced web
sites and stolen data bases and it should be obvious,
why people don’t trust computers concerning cor-
rectness.

But computers are not all that useless. When
the paper based library of Alexandria burned down,
most knowledge was lost as only a few copies where
kept elsewhere. Computers can do better here uti-
lizing distributed storage systems like freenet[2] or
ocean store [3].

Askemos is an attempt to define a special pur-
pose operating system, machine independent and
distributed, with strong emphasis on trustworthi-
ness. It shall fit those application domains, where to-
days computer infrastructure exhibits deficiencies:
governmental use, free speech, long term knowl-
edge management, trade and payment, law enforce-
ment and similar purposes. These domains share
a common point: information should - even in the
event of physical damage - be safe, correct, and
provable to such an extent that people finally find
it suitable to gauge these processes. No attempt was
made to invent something absolutely new, instead
the working rules from the paper age have been
adapted to the digital world.

Askemos must be safe and unbreakable. The au-
thor feels personally challenged to find a way to
break it, but has at this point no idea, how that
would be possible. That was also one reason to pub-
lish the sources of the System.

“Security through obscurity does not
work!”

Threats and Requirements

Information resources and processes must with-
stand several threats to achive reliability and trust-
worthiness. Required are:

Safety and Availability Information can be kept
permanently available by a massive backup in
a distributed storage system like freenet. But
preventing illegal and incidental manipulation
requires strict rules to be followed when data
is to be changed.

Manipulation and loss must be prevented at
all cost.

Security Proprietary and private information has to
be kept as a secure and confidential property
of the owner. This very requirement forbids
the existence of any administrative power,
which can technically overrule users personal
decisions.

Liability Accompanying the privacy requirement,
a purely legal requirement already ensures use
of illegally obtained information to be an ille-
gal act. Keeping that rule effective requires a
certain degree of liability and hence traceabil-
ity.

Furthermore, trade and law enforcement de-
pends on liability.

Integrity Quite basic, general, and usually fulfilled.
Integrity means that no surprising changes can
happen to data. Corresponding checks safe-
guard usually against transmission and stor-
age errors. In Askemos they are extended
from plain data checks to double check that
the meta data properties, pertaining to liabil-
ity, are intact.

This paper starts with the concept of the virtual
machine of Askemos, it then goes to explain some
detail about it and finally implementation decisions
and remarks about the state of development of the
current prototype are provided.

Towards Reliability

The Askemos kernel provides denotation systems
(minimum languages) for the three “axes” of infor-
mation: data (visible, internal structure), association
context (black box environment), and rights. The ut-
most invariant it assures is trustfulness.

The Askemos kernel is the communication in-
frastructure. As such it must inevitably be available
and capable to denote all kinds of communication,
which implies its utitily also for unpopular and even
criminal use - an inherent, unavoidable property of
all infrastructure. The requirement of being univer-
sally available and the fact that security through ob-
scurity does not work anyway, where the primary
reasons to publish the source code under the GNU
public license[9].

Requirement specifications set for the kernel are
the following:

e Trustworthiness shall be the ultimate design
goal. All components are selected with the
criterion of provability in mind. This crite-
rion shall overrule practical wishes if they col-
lide. Integrity is being assured using appropri-
ate cryptographic algorithms and protocols.
Neither shall assumptions be necessary about



honesty of owners or users nor is any level of
security of network hardware assumed. (Un-
fortunately the security of the host machines is
required in order to avoid a certain risk: data
leakage.)

e The system reaches availability at any nego-
tiable rate through redundant distribution.

e A protection scheme, which is not breakable in
theory, secures privacy and information. Take
over of host machines may not cause data leak-
age of any more than exactly the data those
machines where used to support.

¢ No single point of failure shall be able to stop
the system running.

e All processes and objects shall be “in system”,
there shall be no magic exceptions. Objects
shall be complete and minimal (small is beau-
tiful), i.e., in strict sense correctly abstracted.

e The system shall be implemented in a tech-
nology independent manner using widely de-
ployed and open standards whenever avail-
able.

If an implementation does not follow these re-
quirements, it shall be always called a bug and never
a feature, regardless of the reason behind the devia-
tion.

Requirements set for user level applications:

e intuitive, simple and understandable

e tight coupling between developers and users
(synergy effect)

e modelled documents should exhibit a paper-
like behavior

e direct manipulation of objects should be pos-
sible, especially their trading

e alternatives and migration paths should be
part of all designs

Finally it should be noted that these require-
ments are merely a statement of intend. At the time
of writing, there exist only a few actual applications.

The Distributed Virtual Machine

The key concept of Askemos is the distributed vir-
tual machine, which executes informational pro-
cesses. This machine is defined in abstract concepts
of documents and meta data handling.

The Askemos distributed virtual machine ap-
pears to work within the information space, an ab-
stract virtual space where information is kept, no

matter of media and physical location. Consider the
example of a remote chess game. Two chess masters
and an arbiter in a telephone conference. To stress
the point even more, all might be required to just
imagine the game board. There happens just one in-
formational process, we understand it as one chess
game, not as three. The electro chemical signals in
the brains and phones are understood as projections
of the process into a certain medium. Now add
physical chess boards or a paper transcript, these are
just more physical projections of the same idea into
some data space.

The same principle applies to the Askemos vir-
tual machine. This machine exists and executes
it’s processes in the information space. At physi-
cal level, several participating entities (which could
be machines but also human brains) compute their
individual idea of the process state in a somewhat
synchronous fashion. These “individual ideas” are
understood to be projections of the same abstract in-
formation, no matter, how different their encoding
might be. For instance, one computer could keep
it's projection of a picture in png format and another
one as jpeg, it is still considered the same picture and
the human brain will recognize that easily without
keeping it in either form.

It was an error if a physical machine or human
being would indicate a different process state than
human understanding of the same process deems
correct. This entities” projection is deemed wrong
- at least from the observer’s point of view. What
if changes in the human understanding of the pro-
cess itself produce a new formal specification? The
old process is still executed, according to the old un-
derstanding and as such correct. But new theory is
already in the information space and the Askemos
virtual machine correctly executes both, the old and
the new version, though in practice the old idea of
the process will rarely be referred to.

The Askemos virtual machine can fulfill the
above mentioned requirements (safety, security, li-
ability, and integrity), as these properties can be for-
mally specified. The availability of the information
is still at risk if there where too few projections of it
to synchronize. This, however, is a matter of statis-
tics and can be adjusted to any desired level.

The following sections will present the definition
of a minimal (and hopefully complete) set of aspects,
also called axes, of the virtual machine. Care has
been taken to keep formal specification and valida-
tion possible, based on sound and proven theory.



Places in the information space

Many taxonomies have been proposed how to struc-
ture the perceptions used to express ideas, especially
when it comes to programming. Leaving the lat-
ter aside (to see the wood from the trees) we find
that at minimum an idea is a set of associations from
properties to values. These associations are usually
called pairs, arcs, or arrows. If such a set represents
an idea, it can be identified, persist and - under cer-
tain circumstances - be forgotten. In terms of com-
puter science this is a frame and the foundation ba-
sic building block of the Askemos virtual machine.
A well known concept, not in need to be detailed
here.

With respect to human experience and natural
preference for three dimensional models - i.e., for
the sake of end users, we call such a basic building
block a “place” in Askemos. The distributed virtual
machine ensures certain (a minimal set of) invari-
ants about the properties of places. These invariants
pertain to the requirements set out before.

Places have the properties of processes and ob-
jects in other operating systems. They receive mes-
sages. Upon reception they react with a possible
property change (controlled by the virtual machine)
and send messages out to other places. All in an
atomic operation: the well known “process step”.
Places are autonomous: this is the only way to
change the properties of a place.

A message has the same frame structure like a
place, except that they do not persist and ca not re-
ally be identified: they are either present or not.

This latter choice of the model, even though it
shares semantics with the programming language
Erlang, the SOAP standard, and other similar mod-
els, might look somewhat arbitrary here.

Apart from the arguments given below, the au-
thor personally considers RPC a broken design.
There are many communication processes and me-
dia in the real world: Nervous systems, attractants
as used by ants and bees, electrical circuits, human
voice, mailed letters. All of them are unidirectional
and asynchronous - postmen do not wait for you
to answer the letter they just brought. With asyn-
chronous unidirectional messages, a broad set of re-
actions is possible at both sides. Both the commu-
nicating processes can continue in the event of fail-
ure. RPC was explicitly invented to hide the distri-
bution of objects, and make calls appear as if they
were local. It does a good job in that, but it aims at
the wrong direction, because this just amounts to an
arbitrary restriction.

First of all, the model can easily be mapped to
the elements of the petri net theory[8], a quite capa-
ble theory for modeling dynamics. This allows to
formally specify the dynamics of message exchange

between the places, analyse them and proof certain
properties e. g., for being dead lockand life lock free.
To do so, the data property of places take roles of
places in petri nets, the state changes become transi-
tions and messages content map to markings.

Second, the model computes the result of trans-
actions in an atomic operation from just two param-
eters: the current state of the properties of the place
and the properties of the message. Regardless of the
programming language used to express the compu-
tation, the effect maps to a function evaluation. To
the authors knowledge, pure functional program-
ming, without side-effects, is the only way to make
formal proofs of program correctness possible[7]
page 175.

Third, the chosen model divides processes into
process steps, which are visible to the underlying
machine (agent). Chosen at a reasonable granular-
ity (amount of real computation time needed for a
single step), we derive a very convenient point and
a restartable operation to validate and synchronize
the projections (copies) of the same place with the
agents at other physical machines and human brains
etc. (see section about byzantine protocols), who
also supports the place (maintain a copy). In case of
human brains, one would be inclined to write “un-
derstand the place” rather than “support the place”,
but the author hesitates to use such term for pro-
grammed agents, hence humans brains better “sup-
port an idea” if they understand it.

This synchronization moment is furthermore
useful to store the process state in several kinds of
persistent memory. It is a well know fact that the
larger and more reliable a storage system is, the
longer takes it to store the information. Main mem-
ory is used to track each assignment of the proces-
sor — something infeasible to do at the hard disk. Let
alone distributed, shared memory systems such as
freenet. At the moment of synchronization a snap-
shot is taken. From that moment the process can
already continue, while some more time might be
needed the snapshot might need actually store the
process state.

Finally when comparing to recent research about
intrusion tolerant replication system [4], it becomes
apparent (as intended) that the needed primitives
map exactly to those provided by byzantine repli-
cation architectures.

Topology and association context

For each place there is a globally unique object iden-
tifier. In the interest of liability, the identifier should
be somehow a function of the content and meta data
of the place, this way forgery would be impossible
or at least detect- and traceable, as the documents
leave their place, i.e., change identifier, whenever



the content changes. Such behavior appears to be
imperfect for processes, as they become practically
inaddressable. Hence, it was decided to keep such
an invariant only for authentic documents in the
meaning of constant, unforgeable facts. In practice
the object identifier happens to be a cryptographic
checksum from those properties of the place, which,
when kept constant make it a deed. These are the
object identifier of the creator, the date of creation,
the content of the created document (so far it is anal-
ogous to paper certificates) and the dynamics of the
process - another document, which plays the role of
code in object oriented computer science.

Up to here the set of places in Askemos looks
like a daunting disorder. Computer science tradi-
tion would try to press them into some hierarchy
and there might be a good reason to do so from the
cognitive point of view. People have a tendency to
organise things in hierarchies and call it “making or-
der”.

At the other hand, global namespaces have a ten-
dency not to work at all and this is not only due to
different lexical ordering rules and preferred char-
acter sets. The author has spent countless hours
in meetings concerning the document structure of
large projects and found that personal preferences
are the major hindrance to any settlement. The im-
pact and tangle about the distributed name system
in the Internet shall just serve as an example and
the public interest in peer to peer systems, which
maps naturally to human interaction, shall serve as
another hint.

But from any users point of view, there is usually
nothing wrong, if the namespace has it’s root exactly
in this user. After all this is exactly the mirror of the
concept of 'T".

In Askemos there is a set of names associated
with every place from which named objects (ideas,
concepts) are looked up. This association map
serves a second purpose: a place nowhere refer-
enced any more is forgotten and garbage-collected
from the system after some time. (With respect to the
environment, raw material from collected garbage is
separated and recycled, and special care is taken of
hazardous waste.)

In implementations only peer to peer mecha-
nisms are to be used, nothing shall rely on global
namespace or any other limited resource, which is
inevitable for useful operation. Limited / global re-
sources are, instead, understood as exported local
resources, which clearly are subject to trade.

To summarize: the user space of Askemos con-
sists of autonomous cells called “places”. These cells
have the ability to memorize values as their inter-
nal state and compute - in an atomic transaction - a
new state and set of values to be send as messages
to other places.

Distributed Authority

One important aspect of the Askemos machine is a
global rights, roles, and personal identity manage-
ment system.

It has already been mentioned that a central au-
thority is a major security risk due to threats posed
by computer criminals and merely a systematic er-
ror of nowadays computer infrastructure. Further-
more, and this is of conceivable importance for ap-
plication in the legislative domain, central authority
is a mismatch with todays decentralized, democratic
societies.

Capability based schemes have been proposed to
reduce the dangers inherent to environments finally
controlled by a superuser. In a capability system
the authority of a program is just the capabilities it
holds. A capability is usually an opaque bit pattern,
which, when owned by an object, enables that ob-
ject to invoke other objects, which in turn decide by
themselfs whether they execute the requested oper-
ation. Given that the invoking object knows which
operation it invokes, this is equivalent to the invok-
ing object holding a capability for each operation it
can invoke.

Processes must be confined to a strict protocol
when manipulating capabilities. Known capability-
based systems use a special trusted instance, the sys-
tem kernel as in KeyOS, the object reference like the
Java virtual machine or even some hardware sup-
port as IBM’s System 38, to create a universe of capa-
bilities and confine application code regarding capa-
bility operations. An open, distributed system lacks
such a special status. In this section a rule set is
derived which defines the capability manipulation
rules for the Askemos system.

This protection scheme is an extension of capa-
bility systems. Instead of the usual opaque bit pat-
tern, a rule is given, how to create new capabilities
and grant those to, and revoked them from, other
users. Furthermore, these capabilities are not con-
strained to invoke methods of certain objects, in-
stead they can be used to protect any kind of method
in any object. One consequence is that, while usu-
ally capabilities are also used to locate the receiver
of messages, such an implicit knowledge is not en-
coded here. To distinguish this kind of extended ca-
pability from an opaque, unstructured value, we call
such structured capability a “right”.

Askemos uses a separate value space (special
slots of messages and places) to hold rights. This
is a rather arbitrary decision for the sake of clarity
about the sensitive topic, especially in order to make
it easy to discern rights from less sensitive data. Ca-
pability bits are - in contrast to some other systems



- easily read from their data space. Their manipula-
tion is controlled via system calls.

Within Askemos messages are understood as or-
ders. A set of rights is associated with a message,
which indicates the authority under which the or-
dered operation shall be performed. Whenever a
place responds to a message, the code may check
whether those rights are sufficient and deny or ex-
ecute the operation accordingly.

It should be noted that the scheme can not pro-
tect against dirty tricks, where users persuade others
to unwittingly grant their rights.

The Rules

Rights Managment

“Set theory can be viewed as a form of
exact theology.” [Rudy Rucker]

It is a bit more complicated to move rights
around without a superuser, but not much. The best
might be to imagine every single user as the supe-
ruser of itself. This leads to some simple rules: There
is a set A which contains all users S.

ScA

Every users set S contains (among other ressources
pertaining to that user) the set of this users own
rights r.

rcS

Every atomic right ¢ is an element of r
ter

(Atomic rights are somehow similar to filesystems
read, write, execute attributes.)
The set of rights required for an operation is
Tneeded-
Tneeded & T

Every user S can copy a subset 7g4iyen Of his own
rights r to another user S’ rights 7. After this op-
eration we would have:

Vi€ Tgiven (LIt ETALET)

To avoid the creation of a superuser, a user must not
copy all of its rights, especially not to one user alone.
In fact, the user must not even be able to do so ac-
cidentally. This leads to the condition that the set of
all copied rights 7.opieq must not equal the set of all
of the users rights r.

- (T\Tcopied) =0

It is now easy to check the rights for a certain docu-
ment by testing for equality:

(T N T/) = Tneeded

This operation is too expensive in an implementa-
tion, so the set ry;yen, remains intact, as a set in .
We can do then a more convenient check:

(Tgm;en N Tneeded) = Tgiven = Tneeded

These conditions apply — equally well — to the
set of rights 7 g;yen. There exists a superset of 7given,
called ryyned, which stands for the right to delete
Tgiven. User S withholds the difference of 74yneq and

Tgiven-

vng'ven 3 Towned (Towned Towned 2 ng'ven)

With the definitions given so far, the necessary
parts of the rights system are complete. Each user
is the owner of an extensible realm of rights r. In-
dividuals can grant and revoke parts of their realm
among each other. And none can aquire all the
rights owned by anybody else.

Rationale and Background

The actual system as implemented, is - for the sake
of both simplicity of implementation and perfor-
mace - even more restrictive than described so far.
On the other hand it provides some more functions
to simplify testing for common cases. Future ver-
sions might relax the rules, up to the limits given in
the Ist section.

The first idea for this protection scheme was
derived from the one implemented in VSTa and
worked very well with an earlier prototype.

There is, however, a chicken and egg problem:
How are new users (and their initial rights) intro-
duced to the system?

Users cause processing and need resources of
those physical machines, at which agents support
their places. The physical machine is a property of
it’'s owner and, hence, the owner should have the fi-
nal authority to allow other people to utilize his/her
ressources under negotiable terms. Therefore the
owner has to have the chance to allow and termi-
nate support for other users (to be regulated by real
world contracts).

This is done by allowing the owner to link user
places to the one place, which represents the partic-
ular machine.



No single Point of Failure, Byzantine Pro-
tocols in a P2P world

In a distributed system it is meaningless to assume
all parties to be honest and reliable. Consequently,
there must be no need to ever trust any single ma-
chine completely for the virtual machine to continu-
ously operate correctly.

In the absence of byzantine protocols every com-
puter models the application. Any failure of this
machine and any malicious manipulation will in-
evitably effect the application. Byzantine agree-
ment, has been identified as one of the core building
blocks for the design of reliable distributed systems.
Here the model is a “local opinion” only, a projec-
tion of a non-physical process to a physical model.
In the case of concordance of a majority of parties
about these models, it can be assumed that they are
correct.

Several proposals and papers successfully
demonstrated the utility of byzantine protocols.
Most, if not all of them, rely on asynchronous mes-
sages only, which was another reason to favor those
in the definition of the virtual machine. Please refer
to the study “Secure Intrusion-tolerant Replication
on the Internet” [4] by C. Cachin and ]. Poritz for
more details about byzantine protocols.

An important problem with distributed settings
is the grouping of parties into coalitions for the
byzantine aggrement process. One point to consider
is that the selected parties inevitably have access to
the clear text of the informational process. Until
it is known, how processing in the absence of that
knowledge can be performed, the owner of the in-
formation must trust the supporting parties. Such a
situation translates into a shared secret, which has to
be distributed among the selected parties, or, alter-
natively the unification of several secrets at an upper
level.

The threat of physical take over, for which no
amount of cryptography can ever compensate, re-
quires the final authority about such party selection
to be left with the owner of the information. There
is nothing wrong with that. After all, safe-keeping
is a business in the real world, why should that be
different in the virtual world?

Any machine participating in an Askemos net-
work will always be owned somehow, be it the reg-
istry office archive of a town or the calendar and di-
ary in a mobile phone. Fees or tax will have to be
payed for the former and personal trust and sup-
port will count for the spouses phones to have each
others calendars - or just not. A wide range of moti-
vations on human level justify the decision, how ex-
actly to distribute information. Hence the question
is out of the realm of computer science.

One more technical motivation to assign the act

of trust distribution to a human stems from the
fact that it is much cheaper to account for non-
cooperative byzantine failures in the protocol than
for cooperative failures. Cooperative failure trans-
lates into simultaneous malicious operations of dif-
ferent parties. This is a situation, which a human
assignment can easily judge about from physical lo-
cations and ownership reputation, while hardly ex-
pressible “in” computers.

Reality

“What is the difference between theory
and reality? - In theory there is none.”

Reality requires further decisions. This section
gives an overview of the current prototype imple-
mentation. It should be noted that many details pre-
sented here could be subject to discussion, while the
overall semantics stay intact.

All requirements and aspects described so far
translate directly into some code. Decisions how
exactly to implement the aspects were done by se-
lecting the best practices from standard technology.
When calling them best, this means here, that they
are sound in theory and, if that criterion leaves more
than one way, all should be possible, but the most
successful one was chosen. Furthermore, care has
been taken to introduce as few dependencies as pos-
sible, while still providing a practically useful envi-
ronment.

The aim behind this decision strategy is to avoid
creating technical, economical or social deployment
hindrances, without sacrifying the theory behind.

Host System

The existing Askemos system does not yet control
the hardware directly. It is instead implemented as a
server, which at least runs at POSIX compatible sys-
tems, even though most of their functionality is not
needed at all. Therefore, it can be easily deployed
on more secure servers of the Internet, as well as
on cheap hardware running a GNU/Linux or BSD
based system.

The caveat: those host systems still have a su-
peruser. For a high quality deployment, no further
services should be run on the Askemos server ma-
chine and a superuser login or the execution of ar-
bitrary commands via other mechanism like the su
command should be disabled.

Size and complexity of the whole system indi-
cates that it’s feasible today to port Askemos to cell
phones, handhelds and similar hard ware.



Programming Languages

As mentioned before it’s feasible to provide any lan-
guage for application programming. It just has to
be done in such a way that the program is confined
to an isolated environment, which can be a burden
with some language implementations.

The prototyping language Scheme, which is cur-
rently also used for implementation, was chosen be-
cause it is a simple and small language, with pro-
visions for safe computing (range checks, no point-
ers) and capable abstraction mechanisms (higher or-
der functions, continuations). It is well standardized
and the standardization process proceeds. Many
implementations exist and are freely available for
all kinds of environments, for instance down to or-
ganizers hardware, the Java virtual machine and
as new as the .NET platform. Some compilers are
freely available, which create efficient C code and
interfacing to legacy C code is usually not hard. To
summarize: it’s cheap and always possible to mi-
grate to another environment.

Furthermore Scheme is a direct ancestor of the
DSSSL (ISO 10179:1996) standard, which in turn has
influenced the XSLT recommendation of W3C. The
latter are both pure functional languages and thus a
good fit for the Askemos virtual machine. Scheme as
the ancestor made it easy to provide those languages
at application level.

The danger of making mistakes is largely re-
duced by implementing the Askemos kernel almost
completely in functional style as well. This makes
it also easy to guarantee that places are confined to
their data space. There is no need of address spaces
from the host system, as a means to that end.

The selected implementation, rscheme, provides
also preemptive threads (essential for the asyn-
chronous execution model).

Data Model and Compatibility

The Askemos virtual machine is neither data model
specific, nor is the implementation. Currently, the
market makes strong movements towards settling
with XML as the universal data exchange format.
XML is capable to express all kind of tree struc-
tured data, well standardized and widely deployed.
Therefore XML was selected as the “native” data for-
mat of the implementation; processing XML is opti-
mized.

Settling with XML removes also most compati-
bility barriers, as more and more legacy applications
provide XML encoding for data exchange.

The data is currently held in two storage medias:
a) A persistent store, which keeps the tree structures,

hash tables etc. in the internal form as accessible by
the executable code. The technique is called “pointer
swizzling at page fault time”. And b) in a file system
representation.

Network Protocols

The most important application protocols on the In-
ternet are HTTP and SMTP. The current implemen-
tation relies on just these protocols, thereby interfac-
ing to most applications which are used for human
communication.

Because of the importance of these protocols,
most firewalls somehow allow such traffic, so no ob-
stacles are introduced. Though utilizing SMTP for
voting in byzantine protocols would probably go to
the effect to grind the system to halt.

All place to place communication is conceptually
understood as SOAP messages. It is called concep-
tually here, because several redundant information
(envelope and headers) is not actually generated un-
til it’s really needed.

Legal Long Term Availability

All data formats, programming languages and other
standards used for Askemos are unencumbered by
any claims of intellectual property, which is not
freely available. No sudden changes in anybody’s
mind can impact the utility of the system to others.
The implementation itself and the underlying lan-
guage is available under the gnu public license.

Privacy

In the course of the past years some effort was made
to establish global user identity and data reposito-
ries. Those appears to be a premise for electronic
trade systems and would ease many applicative
tasks. Even though no final judgement can yet be
made about their success, it appears that they face
heavy resistance from potential customers and users
up to a degree that those projects are put to a rest.

Said resistance apparently stems from the hu-
man interest in privacy. The account aggregation
those proposed schemes incur do not only drive
paranoid security experts away, but are also felt by
the casual users. Askemos, being distributed with-
out super user authority, can achieve the same util-
ity regarding trade while preserving safety, security
and privacy. It just has to be completed with a de-
cent contract system, to assure quality of service.
The users are than free to choose whom they trust
with their information.



Conclusion

The Askemos system has been practically proven as a deployable operating system. It’s components are
all well researched, none relies on unsound or unproven premises and they don’t interfere. The system
definitions utilizes only public standards. Finally all components are available and safe from surprising
intellectual property claims, a premise to avoid a digital divide.

References

[1] J. E. Wittenberger, “The Askemos project” 1999-2002.
http://www.askemos.org

[2] I Clarke, “The freenet project” 1999-2001.
http://freenet.sourceforge.net/

[3] J. Kubiatowicz et. al, “The ocean store project” 2000-2001.
http://oceanstore.cs.berkeley.edu/publications/

[4] C. Cachin, J. A. Poritz, “Secure Intrusion-tollerant Replication on the Internet” 2002.
http://lwww.zurich.ibm.com/ Cca/papers/sintra.ps

[5] Donovan Kolbly, http://www.rscheme.org

[6] V.Singhal, S. V. Kakkad, P. R. Wilson, “Texas: An Efficient, Portable Persistant Store”
ftp://ftp.cs.utexas.edu/pub/garbage/texaspstore.ps

[7] H. Abelson and G. ]J. S. with Julie Sussmann, “Structure and Interpretation of Computer Programs”
MIT Press, 1985.

[8] http://www.daimi.au.dk/PetriNets

[9] The Free Software Foundation “GNU Public License”
http://mwww.gnu.org/licenses/gpl.html



